a2 United States Patent

Horn et al.

US009158606B2

US 9,158,606 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) FAILURE REPETITION AVOIDANCE IN DATA
PROCESSING

(75) Inventors: Julien Charles Horn, Winchester (GB);
Roger Gordon Lewis, Winchester (GB);
Alan Clive Robinson, Winchester (GB);
Andrew Wright, Hampshire (GB)

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1004 days.

@

(22)

Appl. No.: 12/692,332

Filed: Jan. 22, 2010

(65) Prior Publication Data

US 2010/0185903 A1l Jul. 22,2010

(30) Foreign Application Priority Data

Jan. 22,2009 (EP) oooooooooooeooeeeeeeeeeeeeen 09151137
(51) Int.CL
GOGF 11/30
GOGF 11/00
GOGF 11/22
USS. CL
CPC ... GOGF 11/004 (2013.01); GOGF 11/2257
(2013.01); GOGF 11/3051 (2013.01)

1 @&»"”’W

(2006.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC ... GOG6F 11/04; GOG6F 11/30; GO6F 11/3051;
GOG6F 11/3055; GO6F 11/3058
USPC oo 714/39,47.1,47.2,473

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,572,671 A * 11/1996 Eisenbergetal. ... 714/47.1
6,941,367 B2* 9/2005 Vosseleret al. 709/224
7,171,337 B2* 12007 Yuanetal. 702/185
7,216,260 B2* 5/2007 Hartmannetal. 714/39
7,475,405 B2* 1/2009 Manganaris etal. 719/318

7,509,539 B1* 3/2009 Deneflehetal. 714/48

7,523,357 B2* 4/2009 Irbyetal. 714/47 2
7,840,946 B2* 112010 Guptaetal. 717124
7,861,125 B2* 12/2010 Yamazaki et al. . 714/47 .1

8,095,830 B1*
9,026,467 B2 *
2009/0144625 Al*

1/2012 Cohenetal.coovvnen. 714/45
5/2015 Bammietal. 705/35
6/2009 Muller et al. 715/723

* cited by examiner

Primary Examiner — Joseph Schell
(74) Attorney, Agent, or Firm — Steven L. Nichols; VanCott,
Bagley, Cornwall & McCarthy P.C.

(57) ABSTRACT

Avoiding failure repetition in data processing includes storing
a sequence of circumstances leading up to a previous failure,
monitoring circumstances in a current process, matching a
sequence of circumstances in the current process to a stored
sequence of circumstances, and applying rules to determine if
the current process should proceed.

22 Claims, 7 Drawing Sheets

SYSTEM FOR REPEATED FAILURE AVOIDANCE
e MONITOR [a2
. - SETS OF KNOWN Tz
FAILURE 1
CIRCUMSTANGES T2t
15
i HARD-CODED
Y| | RULES ENGINE
140 HEURISTIC
HULES ENGINE
U
1 INTERRUPTER AMALYSER - 50
50 —
L UPDATER | """ | 51

U.S. Patent Oct. 13, 2015 Sheet 1 of 7 US 9,158,606 B2

100"

| SYSTEM FOR REPEATED FAILURE AVOIDANCE 4

110 N - liww— | \\\133

\,_\ MOMITOR 1 | pe>e— L —

Sl SETS OF KNOWN
| FAILURE
L CIRCUMSTANCES T2
|/ e _ A : N -
§ RARD-OODED
L1 | BULES ENGINE

140 HEURISTIC
_ | | RutESENGINE

Y

INTERRUPTER AMALYSER 7 \\‘Sﬁi}

L UPDATER | | | 51

"

US 9,158,606 B2

Sheet 2 of 7

Oct. 13, 2015

U.S. Patent

PR

Bie

Lh2

e

=

%

}

y

%

7
A IS LM
MO I

GRAAAA0
ol

FOVHOLS|
ONOD3S|

FEWHOLS

A

Y

e

%

!
J
g

M“'“’h\-h‘_ .

B2

U.S. Patent Oct. 13,2015 Sheet 3 of 7

 EVENTSCIRCUMSTANGES OF
A PEOCESS ARE MONRITORED

AND COMPARED TO
PREVIOUS BETS OF
EVENTRGIRCUMSTANCES

3&2/-"\

ﬁ‘; THERE & MAT {;"‘I

ey,

OF BEVENTS!
CHROUMSTANCES?

REFER TO HARD-CODED
BLLES AND HEURISTIC
RULES TO DRTERMINE IF THE
PROCESS SHOULD
CONTINUE

3&4

US 9,158,606 B2

3

oG
&

i,,

N

PROCESS
e

W e

k!

PROCESS
BUPFRESSED

" ALLOWED T0
\wﬁ@fgﬁm o
N YEW

307 MONITOR PROCESS FOR
LMNPREDICTABLE FEEBWLTS

scrww“l T T
il QNFREB GTAELE
- _ ﬁE"‘EUJ’S?’

o
T
™

} ANALYSE EFFECTS OF
AESULTS

i

Y UPDATE HEURISTIC RULES

NG

o ““*\

U.S. Patent

Oct. 13,2015 Sheet 4 of 7

SALL 1S MADE TO THE

US 9,158,606 B2

SERVER MIBROR PROGRAM [

l

agﬁvgﬁéxﬁﬁi}_{gg TH?}:
LIRROR PROGRAM

SERVER MIRROR TRIERTQ
CALL ITSELF

2o

404

‘ww““"“‘}é o -

o

435

|

CALLIB
SUCCESSFLLY

e

 CALL SUCCEEDS BUT

MAY GIVE
UNPREDICTABLE
REBLDLTS

CALL EVENTUALLY FALS
WITH AN EXPECTED FALURE
REASON

Fig. 4A

U.S. Patent Oct. 13, 2015 Sheet 5 of 7 US 9,158,606 B2

450

A1
\ CALL IS MADE TO THE

] SERVER MIRROR PROGRAN [$

: N
~og

2N SERVER EXECUTES THE
RHREBEOR PROGRAM

{IPOATE HEURISTIC
HULES

AAAAAAAAAAAAAA :]

&&ﬁkf&fﬁ MIBROR TRIES TG) r— 3 -
403 | CALL ITSELF | ANALYSE EFFECT OF
S | CALL

T

<

e
P

- P

o g)
. . -f;_s AAAAA
e RULES DEG ‘Tm: ~ CALL ALLOWED BUT)
484 & o e MAY GIVE
e AULOWTHE CAULY UNPREDICTABLE
- /] HESIRTS

\
)
e

CALL 15 SUPPRESSED

Fig. 4B

U.S. Patent

Oct. 13,2015 Sheet 6 of 7

501
o1 WVODATION OF
. BROGRAM {

1

NYDCATION OF
503 PROGRAM 3

\ﬂm.m“\“m.-w;

504 A

Fig. 5A

US 9,158,606 B2

U.S. Patent

Oct. 13,2015 Sheet 7 of 7

INVOGATION OF

US 9,158,606 B2

PROGHAMD S —

»

INVOCATION OF
PROGRARM 2

UPDATE HEURISTIC
BULES

R

55:3

LAt

ATTEMPT TO INVOKE

PEOGRAM S

e

5854

T N

R " RULES DECIDE

ANALYSE EFFECT OF
OALL

i

o | \

L

WHETHER TO Sy
ALLLAW THE CARLT ﬁ"’

CALL ALLOWED BUT
MAY GIVE
UNPREDICTABLE
HEBULTS

558

CALL IS SUPPRESSED

Fig. 5B

US 9,158,606 B2

1
FAILURE REPETITION AVOIDANCE IN DATA
PROCESSING

BACKGROUND

The present invention relates, in general, to the field of
failure prevention in data processing, and, more particularly,
to avoiding failure repetition.

Failures occur in many areas of data processing and can be
time consuming and frustrating. Repeated failures can be
caused by a set of circumstances that trigger a failure. Par-
ticular areas of data processing are susceptible to repeated
errors. Some such errors result in invalid recursive calls which
cause serious results. Conventionally, recursive checking
may be managed by bespoke coding checks, and there is
potential for recursive loops to take place.

BRIEF SUMMARY

A system for avoiding failure repetition in data processing,
comprising a storage device configured to store of a number
of sequences of circumstances leading up to a previous fail-
ure, a monitor for monitoring circumstances in a current
process and matching a sequence of circumstances in the
current process to one of the stored sequences of circum-
stances, and a rules engine for applying rules to determine if
the current process should proceed based on output from the
monitor.

A method for avoiding failure repetition in data processing,
comprising storing a number of sequences of circumstances
leading up to a previous failure, providing a processor pro-
grammed to monitor circumstances in a current process,
matching a sequence of circumstances in the current process
to one of the stored sequence of circumstances, and applying
rules to determine if the current process should proceed.

A computer program product for avoiding failure repeti-
tion in data processing, the computer program product com-
prising a computer readable storage medium having com-
puterusable program code embodied therewith, the computer
usable program code comprising, computer usable program
code configured to store a number of sequences of circum-
stances leading up to a previous failure, computer usable
program code configured to monitor circumstances in a cur-
rent process, computer usable program code configured to
match a sequence of circumstances in the current process to
one of the stored sequence of circumstances, and computer
usable program code configured to apply rules to determine if
the current process should proceed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings illustrate various embodi-
ments of the principles described herein and are a part of the
specification. The illustrated embodiments are merely
examples and do not limit the scope of the claims.

FIG. 1 is a block diagram of a system, according to one
exemplary embodiment of principles described herein.

FIG. 2 is a block diagram of a computer system in which
the present system and methods may be implemented,
according to one exemplary embodiment of principles
described herein.

FIG. 3 is a flowchart showing an illustrative method of
avoiding repeated failures, according to one exemplary
embodiment of principles described herein.

10

15

20

25

30

40

45

50

55

60

2

FIG. 4A is a flowchart showing a first embodiment of a
failure scenario, according to one exemplary embodiment of
principles described herein.

FIG. 4B is a flowchart showing the first embodiment of a
failure scenario of FIG. 4A as addressed by the present sys-
tem and method, according to one exemplary embodiment of
principles described herein.

FIG. 5A is a flowchart showing a second embodiment of a
failure scenario, according to one exemplary embodiment of
principles described herein.

FIG. 5B is a flowchart showing the second embodiment of
a failure scenario as addressed by the present system and
method, according to one exemplary embodiment of prin-
ciples described herein.

Throughout the drawings, identical reference numbers
designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION

The present specification discloses a method, system, and
computer program product for avoiding repeated failures in
data processing. The potential for failures to be repeated is
avoided by providing the ability to capture the sequence of
circumstances that led up to an instance of a failure. By
monitoring a failure’s preceding circumstances and by cap-
turing this sequence of circumstances, the described method
and system allows for the prevention of a subsequent failure
by rejecting similar circumstances in the future. Circum-
stances which may be captured include events, variables,
parameters, conditions, resources in use, etc.

The described method, system, and computer program
product capture and save the sequence of circumstances lead-
ing to an instance of a failure and then applies decision-
making to determine whether to prevent subsequent activities
repeating the same series of circumstances. The decision-
making logic can obey hard-coded rules defined by a user
when determining whether or not to allow particular events to
occur. It can also apply heuristically-learned rules based upon
the failures it detects during the runtime of the system and
autonomically work to discover and correct such faults occur-
ring.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied in any tangible medium of expression hav-
ing computer usable program code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, or semiconductor system, apparatus, device, or
propagation medium. More specific examples (a non-exhaus-
tive list) of the computer-readable medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or

US 9,158,606 B2

3

computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable man-
ner, ifnecessary, and then stored in a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the present system and
method. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the

20

30

40

45

50

4

computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

With reference now to FIG. 1, a block diagram shows a
system (100) for avoiding repeated failures. The system (100)
includes a monitor (110) for monitoring a data processing
process. The monitor (110) monitors circumstances of a data
processing process including events such as the repetition of
program names or transactions, repetition of abend
sequences, repeated patterns of storage or CPU usage, rep-
etition of user identification (user ID) sign-ons, etc. The
monitor (110) may monitor circumstances.

The system (100) accesses previously recorded sets of
sequences (121-123) of circumstances. The recorded sets of
sequences (121-123) are stored from previous failures.

The system (100) includes a hard-coded rules engine (130)
and an heuristic rules engine (140). The system (100) also
includes an analyzer (150) for analyzing the effect of a pro-
cess and an updater (151) for updating the heuristic rules
engine (140) based on the effect of a process and for updating
the recorded sets of sequences (121-123). The system (100)
also includes an interrupter (160) for interrupting a process
being monitored before a failure occurs.

Referring to FIG. 2, an exemplary computer system for
implementing the system for avoiding repeated failures
includes a data processing system (200) suitable for storing
and/or executing program code including at least one proces-
sor (201) coupled directly or indirectly to memory elements
through a bus system (203). The memory elements can
include local memory employed during actual execution of
the program code, bulk storage, and cache memories which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

The memory elements may include system memory (202)
in the form of read only memory (ROM) (204) and random
access memory (RAM) (205). A basic input/output system
(BIOS) (206) may be stored in ROM (204). System software
(207) may be stored in RAM (205) including operating sys-
tem software (208). Software applications (210) may also be
stored in RAM (205).

The system (200) may also include a primary storage
device (211) such as a magnetic hard disk drive and a second-
ary storage device (212) such as a magnetic disc drive and an
optical disc drive. The drives and their associated computer-
readable media provide non-volatile storage of computer-
executable instructions, data structures, program modules
and other data for the system (200). Software applications
may be stored on the primary and secondary storage devices
(211, 212) as well as the system memory (202).

The computing system (200) may operate in a networked
environment using logical connections to one or more remote
computers via a network adapter (216). Also, input/output
devices (213) can be coupled to the system either directly or
through intervening I/O controllers. A user may enter com-
mands and information into the system (200) through input
devices such as a keyboard, pointing device, or other input

US 9,158,606 B2

5

devices (for example, microphone, joy stick, game pad, sat-
ellite dish, scanner, or the like). Output devices may include
speakers, printers, etc. A display device (214) is also con-
nected to system bus (203) via an interface, such as video
adapter (215).

Referring to FIG. 3, a flow diagram (300) shows the
described method of avoiding repeated failures. The events
and/or circumstances of a process are monitored and com-
pared to previously recorded set of sequences of events and/or
circumstances which led to a failure (step 301). Next, it is
determined if there is a match of sequences (step 302). If there
is no match, the method loops (step 303) and the monitoring
continues (step 301). If there is a match, it is referred to the
hard-coded rules and heuristically learned rules (step 304) to
determine if the process should continue (step 305). If the
rules dictate that the process should not continue, the process
is suppressed (step 306).

Ifit is decided that the process can continue, the process is
monitored (step 307) and it is determined if there are any
unpredictable results (step 308). If there are no unpredictable
results, the process ends successfully (step 309). If there are
unpredictable results, the effect of the results is analyzed (step
310) and the heuristic rules are updated (step 311).

Two example embodiments are now described. However, it
will be appreciated that the described method can be applied
to a wide range of different processes and environments. The
first example is the case of calling a program recursively,
leading to an unexpected failure. The second example is of a
non-recursive sequence of calls leading to an unexpected
failure.

In the example of calling a program recursively, a call has
been made to a program on a remote server system. Such calls
may be handled via a special system program (the “mirror”).
This is something that is provided implicitly, and does not
need to be specified on the call itself. If the user makes a
mistake of defining the target program name as the mirror
program, rather than the actual program to be called, then a
loop can occur with unpredictable results. This is illustrated
in the flow diagram (400) of FIG. 4A. A call is made to the
server mirror program (step 401). The server executes the
mirror program (step 402). The server mirror program tries to
call itself (step 403). Next, it is determined if the call is
successful or fails (step 404). If the call is successful, it may
give unpredictable results (step 405). Otherwise, the call may
eventually fail with an unexpected failure reason (for
example, short-on-storage condition, memory error, resource
constraints, etc.) (step 406).

Aspects of the present invention provide a combination of
hard-coded and heuristically-learned rules that would result
in a controlled, rather than an unexpected, failure. For
example, if 10 recursive calls result in an unexpected failure,
the transaction could be terminated in a controlled manner
after 9 calls. Alternatively, the combined hard-coded rules
and learned decision making could result in a decision to
prevent such a call if it occurred on a given system which was
more prone to failing as a result of such recursive activity.

The revised flow diagram (450) for the same situation is
shown in FIG. 4B. As before, a call is made to the server
mirror program (step 401). The server then executes the mir-
ror program (step 402). Next, the server mirror program tries
to call itself (step 403). The hard-coded rules and heuristically
learned rules, decide whether to allow the call (step 454). If
the call is allowed, it may still give unpredictable results (step
455). The effect of such a call is analyzed (step 456) and the
heuristic rules are updated based on the effect of the call (step
457). If the call is not allowed, the call is suppressed by the

20

25

30

40

45

6

combination of logic based upon the hard-coded rules and the
heuristically learned actions (step 458).

The scenario described above may take place in the IBM®
CICS® Transaction Server (IBM and CICS are registered
trademarks of International Business Machines Corporation
in the United States, other countries or both) which is imple-
mented by a batch program using the EXCI interface to
EXEC CICS LINK to a target program within CICS. There is
the need for the server region to provide an environment to
execute the target program under. This environment is trans-
parent to the user, and acts as a layer of code that handles the
inbound request, packages it into a form that can invoke the
server program, then handles the response back from that
program and sends this back to the client program that
invoked it. The client program should not need to know about
this intermediate layer of code, and not have a need to invoke
it directly. It is automatically driven by the server system
when a client request to call a server target program is
received by the server system.

It is possible for the client program to mistakenly try to
invoke the intermediate layer of code directly, rather than the
target program that it really intended to call. For example, the
user may think that they need to explicitly name the interme-
diate layer of code in order for it to be invoked. However, the
server system will always invoke this intermediate program
(“for free”) as part of the handling of calls from the client to
the server system. It should not be explicitly named by the
calling client program. Ifit is passed its own name, it will call
itself (rather than the actual target program that the user
intended to call). This recursion results in a loop of such
invalid calls.

This is a specific example of a more generalized type of
issue where an invalid recursive call has been able to take
place. The results are undefined, but typically serious. For
example, the server system may fail due to lack of resource in
attempting to honor repeated recursive stacking calls. Alter-
natively, it may suffer a particular type of error code.

Aspects of the present invention may ensure that systems
can avoid the potential for a recursive invocation of them-
selves. In the case of the intermediate (transparent) programs
in such a client/server environment as described above, pos-
sible outcomes are handled abends (a command used to acti-
vate, cancel, or reactivate an exit for abnormal termination
processing), or rejections of the client request with archi-
tected responses that describe the error.

Aspects of the present invention are able to differentiate
between valid calls and those that could drive it recursively by
such a user error, and to avoid the situation resulting in unpre-
dictable results. In the example given above, the system inter-
cepts a call request from a client and (having constructed the
environment to run that call on the server) makes the call to
the target program on the server system. The intent is to call a
program as named on the request from the client. In this
particular scenario, protection is needed against calling itself
specifically, since this will result in the server system entering
an uncontrolled loop. However, a generic rule that prevents
any program from calling itself is not acceptable, since such
behavior may well be appropriate (and expected) in certain
circumstances.

Aspects of the present invention allow for recursion to be
disallowed in such a case as described above, but allowed in
other (valid) situations. Aspects of the present invention pro-
vide a means for a system to differentiate between cases that
were valid recursions and cases that were invalid, and make
intelligent decisions based upon previous experience in other
cases. Heuristic logic is employed to detect the results from
allowing a recursion to occur, and, if negative, steps are taken

US 9,158,606 B2

7

to prevent it from happening again. The heuristic decision
making could be augmented with hard-coded rules that take
precedence when particular circumstances are true; for
example, restricting the number of recursive calls to a previ-
ously specified upper bound (e.g. 5).

In an exemplary embodiment in the context of CICS Trans-
action Server, the first-failure data capture (FFDC) informa-
tionis saved and at appropriate points in CICS processing, the
current stack environment is compared to the FFDC informa-
tion to see if there is a match.

In the example of a sequence of calls resulting in unex-
pected failure, a repeated pattern of events results in an unde-
fined failure condition. In transaction processing environ-
ments, it is commonplace for programs to be invoked in
defined sequences. For example, program 1 could invoke
program 2, which in turn invokes program 3. Such invocation
sequences are architected by the application development
team.

In certain circumstances, such sequences of events may
result in unexpected or undefined failure conditions. The
system may be unable to handle a particular stack of program
invocations. There may be issues with the data passed
between the programs, or with multiple invocations of such
program calls under multiple threads of execution.

FIG. 5A shows a flow diagram (500) showing the invoca-
tion of program 1 (step 501), followed by program 2 (step
502), followed by program 3 (step 503), which results in an
unexpected failure (step 504). The combination of hard-
coded rules decision making and the effect of failure condi-
tions resulting in heuristically learned decision making, pro-
vides a method of avoiding such a situation from occurring in
the future if particular conditions are recognized.

FIG. 5B shows a flow diagram (550) of the same scenario.
The invocation of program 1 (step 501) is followed by the
invocation of program 2 (step 502), which in turn is followed
by an attempt to call program 3 (step 553). The hard-coded
rules and heuristically learned rules, decide whether to allow
the call (step 554). If the call is allowed, it may still give
unpredictable results (step 555). The eftect of such a call is
analyzed (step 556) and the heuristic rules are updated based
onthe effect of the call (step 557). Ifthe call is not allowed, the
call is suppressed by the combination of logic based upon the
hard-coded rules and the heuristically learned actions (step
558).

In each example, management software would use the
hard-coded and heuristically-learned rules to avoid an unex-
pected failure by monitoring and capturing sequences of cir-
cumstances and comparing future circumstances against the
hard-coded and heuristically-learned rules. The rules are
partly hard-coded and partly heuristically-learned and auto-
nomically applied. The heuristically-learned rules could rec-
ognize an unexpected failure (for example, a short-on-storage
condition in the example above) and take appropriate action
according to hard-coded rules. The management software
could apply exact rules, for example, an exactly matching
sequence of events, or generic rules such as events occurring
in similarly named programs. Monitored circumstances
could include repetition of program names or transactions,
repetition of abend sequences, repeated patterns of storage or
CPU usage, repetition of user 1D sign-ons, etc.

First-failure data capture (FFDC) information or particular
aspects of the FFDC may be used for the stored sequence of
circumstances for comparing a current process to previous
failures. FFDC is a general term applied to the set of diag-
nostic information that is captured automatically when errors
occur. This information reduces the need to reproduce errors
to get diagnostic information. A variable, specified in the

20

30

40

45

55

60

8

configuration, gives the fully qualified path to the FFDC
storage directory. Configuration parameters control the detail
of information received in the logs. The information captured
by FFDC may include some of the following:

When significant events occur in a process, information is
written to the administration notification log. The infor-
mation is intended for use by database and system
administrators. The type of event and the level of detail
of the information gathered are configurable.

Diagnostic information about errors is recorded in a text
log file. This information is used for problem determi-
nation and is intended for customer support. The level of
detail of the information is again configurable.

For some error conditions, extra information is logged in
external binary dump files named after the failing pro-
cess ID. A trap file may also be generated, if a process
cannot continue processing because of a trap, segmen-
tation violation, or exception. When a process termi-
nates abnormally, the operating system may generate a
core file. The core file is a binary file that contains
information similar to trap files. Core files may also
contain the entire memory image of the terminated pro-
cess.

Aspects of the present invention avoid the potential for
error conditions resulting from invalid recursive calls within
programming environments. In the recursive call scenario,
the system would provide a heuristic means of learning
whether recursive calls to programs were allowable or not,
backed up by rules which could be applied in particular cases.
In the example described above, the particular error could be
avoided by preventing a recursive call in such a case. In
another instance of a valid recursive call to a program, the
logic could allow such a call to proceed.

This approach could be based upon user defined rules
passed to the system, and augmented by experience during
the running of the system. In the case of the call to the server
environment described above, for example, such an approach
would allow a system to learn not to allow such a call to
proceed if it had already seen the results of such a failure.

In one exemplary embodiment, a system for avoiding
repeated failures may be provided as a service to a customer
over a network.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present system and method. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alterna-
tive implementations, the functions noted in the block may
occur out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed substan-
tially concurrently, or the blocks may sometimes be executed
in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration, can
be implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the present system and method. As used herein, the
singular forms “a”, “an” and “the” are intended to include the
plural forms as well, unless the context clearly indicates oth-

US 9,158,606 B2

9

erwise. It will be further understood that the terms “com-
prises” and/or “comprising,” when used in this specification,
specify the presence of stated features, integers, steps, opera-
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present system and method has been presented for pur-
poses of illustration and description, but is not intended to be
exhaustive or limited to the present system and method in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the present system and method.
The embodiment was chosen and described in order to best
explain the principles of the present system and method and
the practical application, and to enable others of ordinary skill
in the art to understand the present system and method for
various embodiments with various modifications as are suited
to the particular use contemplated.

Having thus described the system and method of the
present application in detail and by reference to embodiments
thereof, it will be apparent that modifications and variations
are possible without departing from the scope of the present
system and method defined in the appended claims.

What is claimed is:

1. A system for avoiding failure repetition in data process-
ing, comprising:

a storage device configured to store of a number of
sequences of circumstances leading up to a previous
failure;

a monitor for monitoring circumstances in a current pro-
cess and matching a sequence of circumstances in the
current process to one of the stored sequences of circum-
stances; and

arules engine for applying rules to determine if the current
process should proceed based on output from the moni-
tor,

wherein matching the sequence of circumstances in the
current process to the one of the stored sequences of
circumstances comprises applying generic rules for
similar circumstances.

2. The system of claim 1, further comprising:

an analyzer for analyzing results of the current process if
the current process is allowed to proceed; and

an updater for updating the rules engine.

3. The system of claim 1, further comprising an interrupter
for interrupting the current process in a controlled manner.

4. The system of claim 1, in which the rules engine is
configured to apply at least one of user-defined rules and
heuristically learned rules.

5. The system of claim 1, in which the monitor is config-
ured to capture a sequence of circumstances prior to a failure,
and add that sequence of circumstances to the store of
sequences of circumstances.

6. The system of claim 1, in which the rules comprise at
least one of: restricting the number of recursive calls if the
number of recursive calls reaches a predetermined number,
instructing interruption of the current process in a controlled
manner if the sequences of circumstances in the current pro-
cess matches a one of the stored sequences of circumstances
leading up to a previous failure, and instructing interruption

25

30

40

45

50

10

of'the current process in a controlled manner if events occur-
ring in similarly named programs fail.

7. A method for avoiding failure repetition in data process-
ing, comprising:

storing a number of sequences of circumstances leading up
to a previous failure;

providing a processor programmed to monitor circum-
stances in a current process;

matching a sequence of circumstances in the current pro-
cess to one of the stored sequence of circumstances; and

applying rules to determine if the current process should
proceed,

wherein matching the sequence of circumstances in the
current process to the one of the stored sequence of
circumstances comprises applying generic rules for
similar circumstances.

8. The method of claim 7, further comprising, if the current
process is allowed to proceed, analyzing the results of the
current process, and updating the rules.

9. The method of claim 7, further comprising, if the current
process is not allowed to proceed, interrupting the current
process in a controlled manner.

10. The method of claim 7, in which applying rules to
determine if the current process should proceed comprises
applying user-defined rules, heuristically learned rules, or
combinations thereof.

11. The method of claim 7, further comprising capturing a
number of sequences of circumstances leading up to a failure,
and adding that sequence of circumstances to the stored
sequences of circumstances.

12. The method of claim 11, in which the failure is recog-
nized as an unexpected failure.

13. The method of claim 7, in which the circumstances
comprise events, variables, parameters, conditions, resources
in use, or combinations thereof.

14. The method of claim 7, in which matching a sequence
of circumstances in the current process to one of the stored
sequence of circumstances comprises at least one of: repeti-
tion of program names, repetition of transactions, repetition
of abend sequences, repeated patterns of storage usage,
repeated patterns of central processing unit usage, and rep-
etition of user ID signons.

15. The method of claim 7, in which the rules comprise at
least one of: restricting the number of recursive calls if the
number of recursive calls reaches a predetermined number,
instructing interruption of the current process in a controlled
manner if the sequences of circumstances in the current pro-
cess matches a one of the stored sequences of circumstances
leading up to a previous failure, and instructing interruption
of'the current process in a controlled manner if events occur-
ring in similarly named programs fail.

16. A computer program product for avoiding failure rep-
etition in data processing, the computer program product
comprising:

a computer readable storage device having computer
usable program code embodied therewith, the computer
usable program code to:

store a number of sequences of circumstances leading up to
a previous failure;

monitor circumstances in a current process;

match a sequence of circumstances in the current process
to one of the stored sequence of circumstances; and

apply rules to determine if the current process should pro-
ceed,

US 9,158,606 B2

11

wherein matching the sequence of circumstances in the
current process to the one of the stored sequences of
circumstances comprises applying generic rules for
similar circumstances.

17. The computer program product of claim 16, further
comprising:

computer usable program code to analyze results of the

current process and update the rules if the current pro-
cess is allowed to proceed; and

computer usable program code to interrupt the current

process in a controlled manner if the current process is
not allowed to proceed.

18. The computer program product of claim 16, in which
the rules comprise at least one of: restricting the number of
recursive calls if the number of recursive calls reaches a
predetermined number, instructing interruption of the current
process in a controlled manner if the sequences of circum-
stances in the current process matches a one of the stored
sequences of circumstances leading up to a previous failure,
and instructing interruption of the current process in a con-
trolled manner if events occurring in similarly named pro-
grams fail.

10

12

19. The computer program product of claim 16, in which
the computer usable program code to apply rules to determine
if the current process should proceed comprises computer
usable program code to apply user-defined rules, heuristically
learned rules, or combinations thereof.

20. The computer program product of claim 16, further
comprising computer usable program code to capture a num-
ber of sequences of circumstances leading up to a failure, and
adding that sequence of circumstances to the stored
sequences of circumstances.

21. The computer program product of claim 20, in which
the circumstances comprise events, variables, parameters,
conditions, and resources in use, or combinations thereof.

22. The computer program product of claim 16, in which
the computer usable program code to match a sequence of
circumstances in the current process to one of the stored
sequence of circumstances comprises computer usable pro-
gram code to match at least one of: repetition of program
names, repetition of or transactions, repetition of abend
sequences, repeated patterns of storage usage, repeated pat-
terns of central processing unit usage, and repetition of user
1D sign-ons.

